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LIMIT ANALYSIS AND DESIGN* 

By William Prager** 

Synopsis, Many problems concerning limit analysis and 
limit "design of reinforced concrete beams and frames 
can be treated geometrically In terms of the safe domain 
In load space. The procedure Is Illustrated by a typical 
example. 

INTRODUCTION 

The conventional analysis of Indeterminate structures 

Is restricted to the elastic range. Structures with ductile 

members may remain serviceable far beyond this range, so that 

the limits of their usefulness cannot be explored by the methods 

of elastic analysis. Limit analysis 13 concerned with estimat- 

ing the load intensity at which a given indeterminate structure 

ceases to be serviceable. Limit design, on the other hand, is 

concerned with allocating local yield strength to the members 

or cross sections of an Indeterminate structure in such a manner 

that this structure remains serviceable under given conditions 

of loading. 

The basic concepts of limit analysis were developed more 

than thirty years ago (1), Early applications were restricted 

to continuous beams (see, for instance, (2)), but later on frames 

were also treated successfully (see, for instance, (3))» General 

principles were established by Greenberg and Prater OO, and 

* This paper is based on the results of research sponsored by 
the Office of Naval Research under Contract N7onr-3?801 with 
Brown University, 

** Professor of Applied Mechanics, Brown University, 
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Hill (5)j and a very effective method of analysis was developed 

by Symonds and Neal (6), Contrary to limit analysis, limit 

design in the sense defined above constitutes a practically un- 

explored field. Keyman (7) has studied certain problems in the 

limit desl;;n of continuous beams and frames, and Foulkes (8) 

has pointed out the relation between limit design and linear 

programming. The following discussion is concerned with the 

limit design of a particular frame (Fig. 1),  It is felt that, 

in the absence of general results, much is to be learned from 

the discussion of such a specific example. 

BASIC CONCEPTS 

The elastic analysis of indeterminate beams and frames 

is based on a linear relation between the bending moment M and 

the curvature x (dotted line in Fig. 2). As Hill (5) pointed 

out, limit analysis may be based on the relation between M and x 

which is represented by the full line in Fig. 2. A-jcording to 

this relation, bending can take place only if the bending moment 

attains the limiting values M* or - M", Since these extreme 

values will be reached only at discrete cross sections, bending 

will be localized in "plastic hinges". 

Admittedly, the full-line graph in Fig. 2 represents an 

oversimplification of the actual relation between M and x. One 

important feature of the mechanical behavior of reinforced con- 

crete beams is more adequately reflected by this graph, however, 

than by the dotted line in Fig. 2: at certain (more or less well 
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deflned) values of the positive or negative bending moment the 

curve M cersus x turns rather sharply and becomes fairly flat 

compared to its steep ascent in the elastic range, 

EXAMPLE FRAME 

The frame shown in Fig. 1 is built-in at 1 and pin- 

supported at 5« The loads P and Q are supposed to vary inde- 

pendently, and it is required to find all "safe states of load- 

ing", i.e., all combinations of P and Q ( including negative 

values of these loads) which will not cause plastic failure of 

the frame. If a state of loading is represented by the point 

with the rectangular coordinates P, Q in a two-dimensional "load 

space", the points representing safe states of loading form the 

"safe domain" whose properties will be discussed in the following. 

Bending moments will be considered as positive, if they 

produce tension on the inner side of the frame. Accordingly, 

the angle change at a plastic hinge will be considered positive, 

if it represents an increase of the interior angle. 

It will be assumed that the limiting moments of column 

and beam match at 2 and k,  and that the limiting moments of each 

of the segments 1-2, ..., W-5 vary linearly along this segment. 

Since the bending moments caused by the loads also vary linearly 

along each of these segments, plastic hinces need to be considered 

at the critical sections 1 to k  only. The limiting moments at 

these sections will be written in the form 

Mf = M* + M°,  -MJ = MJ - M^,   (i * 1, .,,, If),  [1] 
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If the limiting moments M' and -MV are considered as the endpoints 

of the "safe range" of the considered cross section, M* repre- 

sents the center of this range and 2M° its width. 

As vras pointed out by Symonds and Neal (6), it is con- 

venient to consider any plastic deformation (made possible by 

the apoearance of a sufficient number of plastic hinges) as 

resulting from the cooperation of certain elementary mechanisms. 

In the present case, there are only two such elementary mechan- 

isms:  the frame nechanism of Fig. 3(a), and the beam mechanism 

of Fig. 3(b). The numbers on the inner side of the frame in 

Fig. 3 indicate the angle changes corresponding to unit linear 

displacements of the points of application of P and Q, respec- 

tively. A generic plastic deformation of the frame will be 

specified by the horizontal displacement p of 2 and the vertical 

displacement q of 3 (Fig. h), 

SAFE SEGMENTS OF EXAMPLE FPAME 

To construct the safe domain of the frame, consider 

first the hypothetical case where K* = 0 and M* = M° = 0 for 

i = 1, 3, *f. Since a section with vanishing limit moments acts 

as a perfect hinge, the frame would, in this case, have hinges 

at 1, 3, U, and 5> and hence be capable of deformation even in 

the absence of a elastic hinge at 2. This type of deformation 

is obtained by combining the elementary deformations shown in 

Figs. 3(a) and (b) in such a manner that the resulting angle 

change at 2 vanishes. This condition of vanishing angle change 
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at 2 requires that p = 2q. The principle of virtual work shows 

then that the frame with perfect hinges at 1, 3> *+> and 5 can 

be in equilibrium only if 

Q/P = -2. [2] 

Even if this ratio between the loads is maintained, the frame 

will eventually fail because a plastic hinge will form at 2 when 

the loads are sufficiently large. Thus, the safe domain in this 

hypothetical case is a finite segment of the line with the equa- 

tion [2]. The endpoints A and B of this segment shewn in Fig. 

5(a) are readily determined by the kinematic method of Greenberg 

and Prager 0+); their coordinates are found to be 

A:  P= M°/6a,    Q = -M°/3a,     1 

B:  P = -hi£/6a,   Q = M°/3a.      J 

It is worth noting that A and B are symmetric with respect tc 

the origin and that the coordinates of A are obtained by multi- 

plying the an^le changes at the joint 2 in Fig. 3(a) and (b) 

by M£. 

Next, consider the case which differs from the previous 

one only by the fact that M* / 0.  It is found that, in this *ase, 

the safe domain shown in Fig. 5(b) is a segment which has the 

same length and slope as before but is centered at the point C 

with the coordinates 

C:   P = M*/6a,   Q = -M*/3a. M 

The coordinates of C are obtained by multiplying the an^le changes 

at the joint 2 in Fig. 3(a) and (b) by M*. 
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Three other hypothetical cases have to be considered. 

In each of them the limiting moments vanish at all but one of 

the critical sections. The corresponding safe domains are 

readily determined by the method outlined above. For e::amplo, 

Fig. 6(a) s.':ov.'s the safe segment (for the case where 11* = II* = 

M* = M* = 0, II? = M, Mg = M° * MJ° = 0, the quantity h/6a being 

taken as the unit of force. Each of these safe segments takes 

account of the yield strength of one critical section only as- 

suming the other sections to have vanishing yield strength. 

SAFE DOMAIN OF EXAMPLE FRAME 

The actual safe domain of the considered frame can be 

obtained from the safe segments by applying the folloving super- 

position principle: a point S of the P, Q plane is in the safe 

domain of the considered frame if and only if the position vector 

of S can be obtained by selecting one point in each of the four 

safe segments and adding the position vectors of these four 

points. 

In accordance with this superposition principle the 

desired safe domain is obtained by the follov/ing steps (Fig. 7): 

1) let the safe segment of Fig. 6(a) undergo a trans- 

lation such that its center moves along the safe 

segment of Fig. 6(b); the (dotted) parallelogram 

swept in this motion is the safe domain which takes 

account of the yield strength of the sections 1 and 

2: 
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2) let this parallelogram undergo a translation such 

that its center moves along the safe segment of 

Fig, 6(c); the (dashed-line) hexagon swept in this 

motion is the safe domain which takes account of 

the yield strength of the sections 1, 2, and 3; 

3) let this hexagon undergo a translation such that 

its center moves along the safe segment of Fig. 6(d); 

the (full-line) octagon swept in this motion is the 

desired safe domain of the frame, i.e., any combina- 

tion of P and 0 represented by a point inside this 

octagon will not cause plastic failure of the frame 

specified by M* = M* = M* = MJ = 0, M^ = M° = M° = 

HlJ = M. 
It follows from this construction that the sides of the 

safe domain arc parallel and equal to the safe segments. If 

the value of M° at a critical section is doubled, for example, 

the corresponding safe segment and hence the corresponding side 

of the safe domain doubles in length but does not change its di- 

rection. Figure 8(a) shows how Fig. 7 changes when the value of 

M? is doubled and that of M° is halved. If the value of M* at 

a critical section is changed, the corresponding safe segment 

slides alonj itself without changing its length (see Fig. 5)5 

the safe domain of the frame therefore undergoes a translation 

in the direction of one side: Figure 8(b) shows how Fig, 3(a) 

changes when M* is changed from 0 to M/2. 
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LIMIT- DESIGN  OF EXAMPLE FRAME 

The loads in Fig. 1 may result from the action of 

structural weight, snow load, and wind pressure, positive values 

of P corresponding to wind pressure on the left wall and negative 

values to wind pressure on the right wall.  If wind suction on 

the flat roof and the lee-side wall is taken irto account, the 

possible states of combined loading are represented by the points 

of a "domain of loading" such as the hexagon ADCDEF in Fig. 9. 

This domain of loading will be assumed to incorporate the appro- 

priate load factors. The octagon DCIKEFGH is circumscribed to 

this domain of loading and has sides of the appropriate direc- 

tions. The manner in which this octagonal safe domain is built 

up from the safe segments is indicated in Fig. 9. By analyzing 

these segments, the values of M* and M° for all critical sec- 

tions are readily determined. One finds 

M* = -0.5M, 
JL 

M° = 6.5M, 

M* =  -0.5M, M2° = M   , 

M|=    M, M° =  2M, 

M* =  -0.5M, M£=   M, 

[51 

where M is the value of the limiting moment used in constructing 

Fig. 6. 71th the values [ 5l j the limiting moments at the criti- 

cal sections are easily found from [l] as follows: 

6.0 M and -7.0 M for section 1, 

0.5 M and -1.5 M for section 2, 
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3.0 M  and  -1.0 M for section 3, 

0.5 M  and  -1.5 M for section *+, 

There is, of course, more than one way of circumscribing 

an appropriate octagon to the domain of loading. For instance, 

the octagon BC'I'ICiF'G'H could be used; this leads to heavier 

sections 1 and 3 and a lighter section h.    It is likely, however, 

that the design for which safe domain and domain of loading have 

a maximum number of vertices in common represents the most econ- 

omic use of materials. 

CONCLUDING REliARICS 

The method developed above is adequate whenever the 

plastic deformation of the structure can be described in terms 

of two elementary mechaiiisa's. When there are three elementary 

mechanisms, as in the case of the frame shown in Fig. 9, a three- 

dimensional load space must be used (with P, c;, R as rectangular 

coordinates). The safe domain is then a polyhedron which can 

be constructed from safe segments very much in the same way as 

the polygonal safe domain was constructed above. Complications 

arise, however, when the three loads P, Q, R are not independent 

of each other. When P and 0 result from wind pressure, for 

instance, the ratio P/Q will have a fixed value n. The safe 

domain for this case is then obtained as the intersection of the 

afore-mentioned polyhedron and the plane P-nQ = 0, When the 

polyhedron is not centered at the origin, this intersection can 

assume a rather irregular shape.  It is believed that the influ- 

ence of changes in cross section on the shape of this two- 
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dimensional safe domain can be properly understood only if this 

domain is visulaized as a plane intersection of the much more 

regular three-dimensional safe domain, 
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